• Users Online: 5423
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 10  |  Issue : 4  |  Page : 197-202

Comparative evaluation of physical and chemical properties of calcium silicate-based root-end filling materials (Mineral trioxide aggregate and biodentine): An in vitro study


Department of Conservative Dentistry and Endodontics, Inderprastha Dental College and Hospital, Ghaziabad, Uttar Pradesh, India

Correspondence Address:
Dr Shilpa Kumari
Department of Conservative Dentistry and Endodontics, Inderprastha Dental College and Hospital, 46/1, Site IV, Industrial Area, Sahibabad, Ghaziabad - 201 010, Uttar Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/IJDS.IJDS_42_18

Rights and Permissions

Aims: Evaluation and comparison of solubility, pH, and calcium ion release of calcium-silicate based root-end filling materials mineral trioxide aggregate (MTA) and biodentine. Methodology: The total sample size for the study was 120. Sixty samples were for solubility of MTA and biodentine and sixty for pH and calcium ion release of MTA and biodentine. MTA and biodentine were added to sixty stainless steel ring molds. The mass of 60 dried glass bottles was measured. Shifting of samples to bottles containing 5 mL of distilled water was done and was stored for 24 h. The bottles were dried at 105°C and weighed. This procedure was repeated for 3, 10, 30, and 60 days. Data obtained for solubility were analyzed with independent t-test. Sixty polyethylene tubes 1 mm long were filled with MTA and biodentine and placed in lidded flasks containing 10 mL distilled water and were preserved in an oven at 37°C. After 2 h, the flasks were removed from hot air oven, and the water was assessed for pH and calcium ion release. pH readings were performed with an pH Meter. Atomic absorption spectrophotometer was used for the detection of calcium ion release. Preservation of the tubes containing the cements was done in new flasks containing 10 mL of distilled water for further detection of pH and calcium ion release in the different time periods of 6, 24 h and 7, 28 days, respectively. Data were analyzed with independent t-test. Results: Significantly higher solubility was exhibited for biodentine for 30 and 60 days than MTA. Statistical difference was observed between the solubility, pH, and calcium ion release values of MTA and biodentine. Conclusions: Biodentine exhibited higher solubility, pH, and calcium ion release in comparison with MTA.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed120    
    Printed6    
    Emailed0    
    PDF Downloaded30    
    Comments [Add]    

Recommend this journal